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Abstract

EPR spectroscopy can be extended to a spectroscopic imaging modality by applying magnetic field gradients across the sample to
encode spatial information in the measured spectra. In this work, we present a mathematical model of the EPR imaging process in
terms of the Radon transform. We describe a model for electron paramagnetic resonance imaging, derive its explicit relationship to
the Radon transform, and discuss several options for reconstructing the sample absorption and dispersion densities. An important
extension to previous descriptions is the incorporation of large amplitude magnetic field modulation, which can be used to improve
the signal-to-noise ratio for continuous wave signal acquisition. Magnetic field modulation is shown to cause well understood
changes in the shapes of spectra in the reconstructed images, but does not affect the spatial resolution achieved in these images. Since
many of the novel image reconstruction strategies and noise filtering algorithms that have been developed for other modalities start
from this formalism, this work allows for their direct application to EPR imaging. This promises to lead to further improvements in
EPR imaging techniques.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Capabilities, challenges, and motivation for the

theoretical model

Electron paramagnetic resonance imaging (EPRI) is a
technique capable of measuring the spatial and spectral
distribution of the absorption and dispersion of RF en-
ergy by an extended sample of paramagnetic probes
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[1,2]. Images of water soluble probes that have been in-
jected into animals provide high sensitivity physiologic
information [3–7]. These radicals, or spin probes, are de-
signed to be sensitive to specific aspects of physiology
[8]. Using a variety of spin probes, measurable quantities
include, but are not limited to, the distribution of endog-
enous or introduced paramagnetic species [9–11], tissue
redox status [12], pH [13], and microviscosity [14]. One
particular measurement that has received significant
attention is the measurement of tissue oxygen concen-
tration [5,10,15].

Recent advances in spin probe chemistry and spec-
trometer design have addressed some of the challenges
inherent in EPRI, thereby increasing sensitivity and
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List of symbols

Functions

f ðB;~xÞ Spectral–spatial object, 4D EPR density,
has both absorption and dispersion com-
ponents

fswðB;~xÞ Spectral–spatial object, centered about B0

f~rð~rÞ Spectral–spatial object, expressed as a
function of ðB; c~xÞ, centered about B0

~f~rð~r;BmÞ First harmonic representation of the spa-
tial spectral object, f~rð~rÞ, for a given mod-
ulation amplitude and frequency

pðn; â~GÞ Radon transform of f~rð~rÞ
snðn; ~GÞ Measured EPR spectra, in terms of nor-

malized distance along projection axis
sðBsw; ~GÞ Measured EPR spectra
~snðn; ~GÞ First harmonic EPR signal for a given

modulation amplitude and negligible mod-
ulation frequency

Roman characters

BTOT Magnetic field strength, from applied and
microscopic sources, orthogonal to the
excitation field

~B1 Magnetic field component of the RF exci-
tation wave

B Strength of the applied magnetic field
Bm0 Magnetic field corresponding to m0 for

EPR
DB Magnetic field range of the EPR signal

without an applied magnetic field gradient
Bappð~xÞ Applied magnetic field
Bsw Applied, spatially uniform magnetic field

offset from B0 used to sweep the field
across the resonance

B0 Applied static magnetic field
DBsw Sweep width, range over which the mag-

netic field must be swept to cover the reso-
nance

DBsw,alt Sweep width, defined to produce projec-
tions of uniform length

Bmod (t) Modulated magnetic field strength
Bm Amplitude of the modulated magnetic field
B 0 (t) Temporary magnetic field used for calcu-

lating the effect of modulation on images

c Scalar constant relating magnetic field
units and spatial units

~G Applied magnetic field gradient
G Applied magnetic field gradient magni-

tude, positive definite
Ĝ Applied magnetic field gradient direction
Gmax maximum gradient magnitude
g g-factor
h Planck�s constant
DL Diameter of spherical spatial support of

the spatial–spectral object
OðB2

m; tÞ Taylor series terms proportional to 2nd or
higher orders of Bm

~r Cartesian coordinates in the image space
r 0 (t) Temporary image coordinates used for

calculating the effect of modulation on
images

t Time
R�1 Inverse Radon transform operator
T Period of the modulated magnetic field
~x 3D spatial position
x 0 (t) Temporary spatial position used for calcu-

lating the effect of modulation on images

Greek characters

â~G Unit vector describing the applied mag-
netic field direction

a Angle normal to lines of integration with
respect to the B-axis in a {B,j} space

b Bohr magneton
DBsw

Magnetic field sampling interval
Dn Projection sampling interval
j Spatial axis defined by the cross-product

of ~G and~x
m RF excitation frequency
m0 Experimental RF excitation frequency
n Normalized distance along the projection

axis
n 0 (t) Projection of the modulated magnetic field

with opposite sign
xm Frequency of the modulated magnetic field
X~r Spatial support of the spectral–spatial ob-

ject, in terms of~r
X~x Spatial support of the spectral–spatial ob-

ject, in terms of~x
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extending in vivo applicability to larger subjects. Water
soluble spin probes with overall peak-to-peak linewidths
as low as 2.5 lT and transverse relaxation times of as
large as 12 ls (spin packet linewidth of �0.5 lT) at both
X-band and 250 MHz have been developed [16,17]. This
increases the signal-to-noise ratio (SNR) of the EPRI
measurements and the sensitivity to oxygen. The devel-
opment of EPR spectrometers using low excitation fre-
quencies has enabled successful EPRI of in vivo
physiology using small rodents [18–22]. In vivo EPR
imaging is being performed at frequencies near the
200 MHz excitation frequency commonly used in 4.7 T
MRI systems and significantly lower than the frequen-
cies used for recent high field MRI [23]. Resonator sys-
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tems have been designed for large, lossy, and living sam-
ples [24–26]. Coupled with the unique ability of EPR
imaging for certain physiologic measurements, these ad-
vances have led to increased interest in EPR imaging
over the past several years.

1.2. Previous research: Acquisition of EPRI data

It was recognized independently in NMR [27] and in
EPR [28,29] that magnetic resonance spectra acquired
with static linear magnetic field gradients established
across sample may be interpreted as projections of an
object with an intrinsic spectral dimension. Due to the
rapid relaxation of the EPR resonance, ranging from
ns to several microseconds, EPR image data are col-
lected with fixed stepped gradients and either pulsed or
continuous wave (CW) spin excitation. These initial pa-
pers describe the theory for acquiring and reconstructing
2D spectroscopic images. Results include the relation-
ship between the gradient magnitude and the spectral
projection angle and the range conversion and scaling
factor that relate the acquired spectral data to the de-
sired image projections. Spectroscopic images can then
be reconstructed using conventional image reconstruc-
tion techniques [30].

The current work augments these and subsequent pa-
pers that demonstrate 3D [31] and 4D [32] spectroscopic
EPR imaging by providing a precise mathematical
description of the relationship between the acquired
spectra and the Radon transform and by defining the ef-
fects of Zeeman modulation [33]. Such a description is
necessary to optimize the sensitivity of the technique
and the accuracy of the physiologic information derived
from EPR images. A precise theoretical model of EPR
imaging will enable the development of novel algorithms
of image acquisition, processing, and reconstruction and
provide a general basis for iterative approaches to image
reconstruction. In this work, we describe a model for
spectroscopic EPRI, derive its relationship to the Radon
transform, and discuss several options for reconstruct-
ing the resonance distribution and estimating the spec-
tral parameters of interest.

1.3. Data collection with large modulation amplitude

CW-EPR spectra measured using overmodulation,
defined as Zeeman modulation amplitudes greater than
one-tenth to one-third the overall peak-to-peak line-
width, become increasingly distorted as the amplitude
of the modulation rises [34]. Accompanying this distor-
tion is a sharp increase in the signal amplitude as the
modulation amplitude approaches the width of the spec-
tral features and then a gradual decrease after this point.
Accordingly, overmodulation can be used to increase
the SNR of measured spectra. However, without an
accurate model to account for the spectral distortion it
is difficult to obtain accurate estimates of the underlying
spectral parameters, such as the intrinsic Lorentzian
linewidth. In order to overcome this limitation, several
algorithms have been presented that model the effect
of modulation amplitude on measured spectra and allow
estimation unbroadened linewidths [35,36]. Recently a
model which accurately accounts for the effects of both
modulation amplitude and frequency on the recorded
spectra has been described with an accompanying effi-
cient spectral fitting algorithm [37]. Using this model,
spectral parameters can be accurately and precisely esti-
mated over the range of practical modulation ampli-
tudes and frequencies, while allowing operation at a
much higher SNR [38].

A key question that needs to be addressed using high
modulation for EPR image acquisition is the effect of
modulation on the spatial resolution of the spectral–spa-
tial image. Naively, one may expect that an increased
modulation amplitude would blur reconstructed spec-
troscopic images and decrease their spatial resolution.
A principle result of this paper is that the effects of over-
modulation are propagated solely into the spectral dis-
tributions in the reconstructed image, in a clearly
defined manner; spatial resolution is unaffected by the
large modulation amplitudes.
2. Theory

2.1. EPR with an applied magnetic field gradient

The absorption of energy at RF by an unpaired elec-
tron prepared in a magnetic field occurs when the pho-
ton energy equals the electron Zeeman energy
splitting. This resonance condition can be expressed as

hm ¼ gbBTOT; ð1Þ
where h is Planck�s constant, m is the frequency of the RF
wave, g is the g-factor, b is the Bohr magneton, and
BTOT is the strength of the main magnetic field which
is taken to be orthogonal to the RF magnetic field ~B1.
The magnetic field, BTOT, is a sum of applied magnetic
fields and microscopic fields generated by inter- and
intramolecular paramagnets.

For irradiation with a fixed frequency m0 an ensemble
of electrons will have a four-dimensional spectral–spa-
tial resonance density f ðB;~xÞ. This density describes
the sum of the absorption and dispersion per unit vol-
ume and per unit magnetic field at spatial location ~x
for an externally applied magnetic field with strength
B. This intensity distribution will be referred to as the
spectral–spatial object. The data obtained in the imaging
process give an estimate of the spectral–spatial object
which we will call the spectral–spatial image. We assume
that f ðB;~xÞ is a bounded function with finite support
over the range ½Bm0 � DB

2
;Bm0 þ DB

2
� � X~x, where



Fig. 1. Shown is the effect of a linear magnetic field gradient on spectra
recorded for a two-dimensional spectral–spatial object and the
interpretation of these spectra as the Radon transform of the object.
Lines of integration are denoted by dashed lines and in (C) the dotted
line is parallel to the projection axis. (A) Without an applied magnetic
field gradient, the recorded spectrum is the sum of the individual
spatial components or a projection of the object onto the spectral axis.
(B) When a small positive gradient is applied, the individual spatial
components pass through resonance at values of Bsw that depend on
the their spatial positions and the components are resolved in the
recorded spectrum. (C) With proper scaling, the spectrum shown in (B)
can be interpreted as a projection of the spectral–spatial object with
projection angle a.
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Bm0 � hm0=gb, DB is the magnetic field interval that must
be fully sampled, and X~x is the spatial support with
diameter DL. The spectral distribution is not strictly
bounded, as it is composed of Lorentzian components;
however, intensity in the tails of the spectrum become
negligibly small and an effective bound may be used.
Typically, absorption spectra are measured over the lar-
ger of the ranges of roughly 10–40 times the HWHM of
the intrinsic Lorentzian components and seven times the
peak-to-peak linewidth.

The applied magnetic field Bappð~xÞ consists of the spa-
tially invariant static and swept main magnetic fields B0

and Bsw and the spatially varying magnetic gradient field
~G �~x,

Bappð~xÞ ¼ B0 þ Bsw þ ~G �~x: ð2Þ
This assumption of gradient linearity is necessary to de-
scribe this situation using the standard Radon trans-
form. However, gradient non-uniformities can be
naturally described using the generalized Radon trans-
form [39–41]. Here, B0 is a static field whose magnitude
is set near that of the resonance field, Bm0 , and Bsw is a
variable offset from B0 used to sweep the field over the
range of the resonance. The magnitude and direction
of the magnetic field gradient are given by G ¼ j~Gj and
Ĝ ¼ ~G=G, respectively. Here, G 2 [�Gmax,Gmax], where
Gmax is a maximum gradient magnitude and Ĝ varies
over 2p steradians, or one hemisphere in the spatial do-
main. Note that spatially varying error terms due to
inhomogeneities in the nominally spatially invariant
components B0 and Bsw and nonlinearities in the spa-
tially varying term may be naturally included in Eq. (2).

In a 4D fB; ~xg space, the resonance condition
hm0 ¼ gbBappð~xÞ defines a hyperplane over which elec-
trons will be excited. For a given Bappð~xÞ, an integral
over this hyperplane,Z B0þDB

2

B0�DB
2

Z
X~x

f ðB;~xÞdðB� Bappð~xÞÞd~xdB; ð3Þ

will contribute to the signal measured at a particular
Bsw. This represents the projection of the signal from
the hyperplane onto an orthogonal line traversed by
varying Bsw. The spectrum, sðBsw; ~GÞ, is given by integra-
tion over the set of hyperplanes defined by Eq. (3) as Bsw

is varied. Using Eq. (2) in Eq. (3) yields

sðBsw; ~GÞ ¼
Z B0þDB

2

B0�DB
2

Z
X~x

f ðB;~xÞdðB� ðB0 þ Bsw þ ~G �~xÞÞd~xdB;

ð4Þ

which may be re-expressed in terms of fswðB;~xÞ �
f ðB0 þ B;~xÞ as

sðBsw; ~GÞ ¼
Z þDB

2

�DB
2

Z
X~x

fswðB;~xÞdðB� Bsw � ~G �~xÞd~xdB:

ð5Þ
Such EPR spectra, collected with and without a mag-
netic field gradient, and their interpretations as projec-
tions of a spectral–spatial object is demonstrated in
Fig. 1. For a spatially uniform magnetic field, the re-
corded spectrum can be regarded as a projection of
the spectral–spatial object onto the spectral axis. Here,
integration occurs over all spatial coordinates. This is
shown in Fig. 1A for a two-dimensional object consist-
ing of three samples with spectra with the same centers
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but different widths. Imposing a linear magnetic field
gradient along the x-axis effectively shears the object,
with respect to Bsw, as shown in Fig. 1B. With this gra-
dient, and integration of signal along lines perpendicular
to the spectral axis, the individual spatial components
are distinguishable in the recorded spectrum. Fig. 1C re-
casts the shearing process as a rotation of the lines of
integration in the spectral–spatial space. This pictorially
demonstrates that the acquisition of the RF absorption
as a function of gradient direction, gradient amplitude,
and sweeping magnetic field magnitude can be directly
related to a Radon transformation of the spectral and
spatial information from the sample. This establishes
the general relationship between swept field EPR acqui-
sition in the presence of fixed stepped gradients and the
Radon transform. The following section establishes the
formal relationship between the two.

2.2. Relation to the Radon transform without Zeeman

modulation

For a given value of Bsw, the integration in Eq. (4) is
carried out over the hyperplane specified by

B ¼ Bsw þ ~G �~x ð6Þ
in the four-dimensional space fB; ~xg. This four-dimen-
sional operation can be reduced to two dimensions by
introducing a new variable

j ¼ cĜ �~x; ð7Þ
where c is a scalar constant with units of magnetic field
strength over length. Note that j has units of magnetic
field strength. Setting c = DB/DL is a useful option that
facilitates uniform angular sampling in the spectral–
spatial space. Using this variable, one can define an
effective two-dimensional space, {B,j}, with common
units for both axes. Here, the hyperplane defined in
Eq. (6) is collapsed to a straight line with a slope of
c�1G,

B ¼ Bsw þ GðĜ �~xÞ ¼ Bsw þ c�1Gj: ð8Þ
The angle a, describing the angle between the normal to
this line and the B-axis, is given by

tan a ¼ �c�1G; ð9Þ

where a 2 ½� p
2
; p
2
�. Using Eq. (9), one can re-express Eq.

(4) as

sðBsw; ~GÞ ¼ cos a
Z þDB

2

�DB
2

Z
X~x

fswðB;~xÞdðcos aB

� cos aBsw þ sin acĜ �~xÞd~xdB: ð10Þ

Finally, Eq. (10) can be written as

sðBsw; ~GÞ ¼ cos a
Z
X~r

f~rð~rÞdðn� âG �~rÞd~r; ð11Þ
where f~rð~rÞ ¼ fswðB;~xÞ and
n � cos aBsw;

~r � ðB; c~xÞ;
âG � ðcos a; sin aĜÞ;

X~r �
DB
2

;
DB
2

� �
� cX~x:

ð12Þ

The integral on the right-hand side of Eq. (11) is the 4D
Radon transform of f~rð~rÞ, which is denoted by pðn; âGÞ,

pðn; âGÞ ¼
Z
X~r

f~rð~rÞdðn� âG �~rÞd~r: ð13Þ

Therefore

sðBsw; ~GÞ ¼ cos apðn; âGÞ: ð14Þ
In practice, spectra forEPRI are collected as a function

of n rather than Bsw; data points within each projection
are separated by the same distance along the projection
axis, rather than the same distance in absolute field units.
With this convention, Eq. (14) may re-expressed as

snðn; ~GÞ ¼ cos apðn; âGÞ; ð15Þ
where snðBsw cos a; ~GÞ � sðBsw; ~GÞ. To maintain a uni-
form sampling density in these projections, the sampling
interval, in terms of magnetic field, must increase as the
gradient magnitude rises. Defining Dn to be the projec-
tion sampling interval and DBsw to be the field sampling
interval, we obtain

DBsw ¼ Dn

j cos aj : ð16Þ

Given an estimate of pðn; âGÞ, the spectral–spatial im-
age can be reconstructed according to

f~rð~rÞ ¼ R�1 pðn; â~GÞ
� �

; ð17Þ

where R�1 is the inverse Radon transform.
2.3. Gradient magnitude and direction domain for

acquisition of spectral–spatial images

For many applications of the 4D Radon transform,
the sampled volume is a four-dimensional hyper-sphere.
However, as we have discussed and expressed in Eq.
(12), the spectral range in the 4D spectral–spatial objects
considered here is independent of the spatial position.
At each spatial position we wish to sample the spectral
axis from ½DB

2
; DB

2
�. Thus, the sampled volume is a hy-

per-cylinder, which encompasses a complete sphere in
the spatial domain and the finite range ½DB

2
; DB

2
� in the

spectral domain. This range of spectral and spatial coor-
dinates has been chosen to ensure that sufficient data is
obtained to provide an image of all spectral information
within the interval ½DB

2
; DB

2
� and a spatial interval of

½DL
2
; DL

2
� along each of the three spatial axes. One ap-

proach to efficiently accomplishing this involves using
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a changing range of Bsw. This range can be derived from
the limits of integration and d-function arguments seen
in Eq. (10). According to these quantities, and assuming
that c = DB/DL,

Bsw 2 �DB
2

� c tan a
DL
2

;
DB
2

þ c tan a
DL
2

� �

¼ �DB
2

ð1þ tan aÞ;DB
2

ð1þ tan aÞ
� �

: ð18Þ

The width of this range, often referred to as the sweep
width, is given by

DBsw � DB½1þ tan a�: ð19Þ
Eq. (19) defines the minimum sweep width necessary to
measure the entire signal within a rectangular field of
view for a given gradient magnitude. Note that the
sweep width varies with the gradient magnitude and
leads to projections of varying length. An alternate def-
inition of the sweep width that results in projections of
uniform length has been presented [29]. According to
this definition, again assuming that c = DB/DL,

DBsw;alt ¼
ffiffiffi
2

p
DB

cos a
: ð20Þ

Using this definition, the sampled volume is the hyper-
sphere that circumscribes the previously defined hyper-
cylinder. This volume includes spatial regions known
to be devoid of signal. Because of this, it is a less efficient
definition of the sweep width than that of Eq. (19), but
one that is useful in those practical situations where the
image reconstruction routine does not accept projec-
tions with varying length.

2.4. Relation to the Radon transform with Zeeman

modulation

To increase the SNR of measured spectra, the signal
is modulated at an audio frequency, and narrow-band
phase sensitive detection is used. This modulation is
established by superimposing a sinusoidally time-vary-
ing, spatially uniform magnetic field onto the applied
magnetic field. For modulation of amplitude Bm > 0
and angular frequency xm, the modulation field can be
expressed as BmodðtÞ ¼ Bm sinxmt. Therefore the time
varying resonance signal is given by

snðnþ BmodðtÞ cos a; ~GÞ: ð21Þ
The amplitude of the component of this signal that var-
ies at the modulation frequency xm and in phase with a
modulation reference signal is measured as a function of
n. This signal, referred to as the first harmonic signal,
can be expressed mathematically as

~snðn; ~G;BmÞ ¼
1

T

Z T

�T
snðnþ BmodðtÞ cos a; ~GÞ sinxmtdt;

ð22Þ
where T = 2p/xm is the period of the modulation field
and the modulation frequency is small relative to the
spectral linewidth expressed in Hertz [42]. Note that
Eq. (22) makes no assumption about a limit on the mod-
ulation amplitude. Specifically, it may be much larger
then the linewidth, though the effects of this overmodu-
lation must be addressed during image analysis as dis-
cussed in the following section on image
reconstruction. For modulation amplitude sufficiently
large to exceed the linear response limit, where, for
example, passage effects occur, the description presented
below breaks down.

Combining [15] and [22] one obtains,

~snðn; ~G;BmÞ ¼ cos a
1

T

Z T

�T
pðn� n0ðtÞ; âGÞ sinxmtdt;

ð23Þ
where

n0ðtÞ ¼ � cos aBmodðtÞ: ð24Þ
According to the shift-theorem for the Radon trans-
form, the inverse Radon transform of pðn� n0ðtÞ; âGÞ
yields a shifted distribution function f~rð~r �~r 0ðtÞÞ, where
~r 0ðtÞ ¼ ðB0ðtÞ; c~x 0ðtÞÞ satisfies
~r 0ðtÞ � âG ¼ n0ðtÞ: ð25Þ
This can be expanded into

cos aB0ðtÞ þ c sin aĜ~x 0ðtÞ ¼ � cos aBmodðtÞ: ð26Þ
By multiplying both sides of Eq. (26) by cos a and car-
rying out the integration of a over 2p, one can show that

B0ðtÞ ¼ �BmodðtÞ: ð27Þ
Similarly, multiplying both sides of Eq. (26) by sin a and
carrying out the integration of a over 2p, one obtains

c~x 0ðtÞ ¼ 0: ð28Þ
Therefore, the inverse Radon transform of Eq. (23) can
be rewritten as

R�1 ~snðn; ~G;BmÞ
cos a

" #
¼ 1

T

Z T

�T
f~rðBþ BmodðtÞ; c~xÞ

� sinxmtdt: ð29Þ

Note that differences between the right-hand side of
Eq. (29) and f~rð~rÞ appear only in the spectral dimension.
Thus, the measured spatial distribution is unaffected
by modulation and, assuming adequate sampling, the
modulation amplitude does not affect the spatial resolu-
tion in reconstructed images, even for large modulation
amplitudes.

2.5. Image reconstruction

Eq. (29) expresses the relationship between the mea-
sured first harmonic absorption spectra and the Radon
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transform of the spectral–spatial object for modulation
amplitudes within the linear response limit. It provides
the foundation for reconstruction of the spectra–spatial
image via one of the many inverse Radon transform
algorithms [30]. For each of these algorithms, there are
several alternative methods that may be used to recon-
struct the image.

2.6. Approximate relationship accurate for small

modulation amplitudes and frequencies

The first of these alternatives is applicable for modula-
tion amplitudes much less than the widths of the spectral
features in the absorption distribution and gives a direct
estimate of f~rð~rÞ. snðn; ~GÞ is differentiable with respect to
n and can be expanded into a Taylor series:

snðnþ BmodðtÞ cos a; ~GÞ ¼ snðn; ~GÞ þ
osnðn; ~GÞ

on

� BmodðtÞ cos aþOðB2
m; tÞ;

ð30Þ

where OðB2
m; tÞ denotes the terms in the series that are

proportional to second or higher orders of Bm. Substi-
tuting Eq. (30) into Eq. (22) yields

~snðn; ~G;BmÞ ¼
osnðn; ~GÞ

on
Bm cos a

þ 1

T

Z T

T
OðB2

m; tÞ sinxmt dt: ð31Þ

Because lim
Bm!0

OðB2
m;tÞ

Bm
! 0, one obtains from Eq. (31)

that

lim
Bm!0

~snðn; ~G;BmÞ
Bm

¼ osnðn; ~GÞ
on

cos a: ð32Þ

Using Eq. (14) in Eq. (32), one can thus establish a rela-
tionship between the Radon transform of the density
function f~rð~rÞ and the measured signal as

opðn; âGÞ
on

¼ 1

cos2a
lim
Bm!0

~snðn; ~G;BmÞ
Bm

: ð33Þ

For small modulation amplitudes, the measured signal
gives an approximation of the limit in Eq. (33)

lim
Bm!0

~snðn; ~G;BmÞ
Bm

� ~snðn; ~G;BmÞ
Bm

ð34Þ

and the derivative of the Radon transform of can be
estimated as

opðn; âGÞ
on

� 1

cos2a
~snðn; ~G;BmÞ

Bm

: ð35Þ

Using this relationship, one can estimate pðn; âGÞ from
its derivative, and reconstruct the density function
f~rð~rÞ according to Eq. (17) by use of a wide variety of
reconstruction algorithms.
One can also reconstruct the derivative of f~rð~rÞ di-
rectly from the estimate of the derivative of the Radon
transform. Specifically, it can be shown that

df~rðB; c~xÞ
dB

¼ R�1 cos a
dpðn; âGÞ

dn

� �
� R�1 ~snðn; ~G;BmÞ

Bm cos a

" #
:

ð36Þ
The accuracy of the above particular set of methods

relies on the assumption that the modulation amplitude
is significantly less than the overall width of the narrow-
est resonance in the object. Under the small amplitude
assumption, the width of the observed spectra will in-
crease linearly with the modulation amplitude.

2.7. Reconstruction directly using the modulation

distorted spectra

A second method for reconstructing the spectral–spa-
tial image involves direct reconstruction from the ac-
quired data, ~snðn; ~G;BmÞ, without any assumption that
the modulation amplitude is small. The use of large
modulation amplitudes will lead to distortion of the
spectral shape, roughly described by broadening, and
non-linear changes in the spectral amplitude. This, how-
ever, is distinct from being in the non-linear response
limit where the physics of the absorption cannot be de-
scribed by a linear Bloch equation. Modulation ampli-
tudes on the order of the width of the spectral features
can be used to increase the spectral amplitude and the
SNR of the measured data. The dependence of spectral
amplitude on modulation amplitude is well known for
the basic spectral shapes [34], but is not well defined
for spectra acquired with gradients and generally un-
known spatial distributions. When overmodulation is
used, we demonstrate that only the spectral, and not
the spatial, distributions in the reconstructed images will
include distortions due to the modulation. Extraction of
the intrinsic spectral parameters requires appropriate
spectral fitting to get an estimate of f~rð~rÞ [38].

Analogous to the definitions of Eq. (21) and Eq. (22)
for spectra collected with an applied field gradient, we
may define the first harmonic signal detected from a point
sample located at~x with no magnetic field gradient as

~f~rð~r;BmÞ �
1

T

Z T

�T
f~rðBþ BmodðtÞ; c~xÞ sinxmtdt: ð37Þ

Thus, Eq. (29) can be re-expressed as

R�1 ~snðn; ~G;BmÞ
cos a

" #
¼ ~f~rð~r;BmÞ: ð38Þ

Direct reconstruction from the modulation distorted
spectra produces an image where the spectra associated
with each spatial voxel are independently distorted
according to the modulation conditions. As noted previ-
ously, the spatial distribution is unaffected by Zeeman
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modulation. From this data, spectral fitting may be ap-
plied to provide an accurate estimate of undistorted
spectral parameters at each point in the reconstructed
image. A spectral fitting algorithm, such as that de-
scribed by Robinson et al. [37], can be used to recover
an estimate of f~rð~rÞ from that of ~f~rð~r;BmÞ made accord-
ing to Eq. (38).

2.8. Integration of the modulated spectra prior to

reconstruction

Direct reconstruction from the first harmonic projec-
tions results in a spectral–spatial image containing first
harmonic spectra, as observed in Eq. (38). These first
harmonic projections are not positive definite. However,
non-negativity is not a necessary condition for many im-
age reconstruction algorithms, including filtered back-
projection and direct Fourier reconstruction. Other
forms of image reconstruction, including many iterative
techniques, do rely on positive definite projection data.
One method to achieve a positive definite signal, for a
pure absorption signal, is to integrate the measured
spectra. This results in modulation-distorted absorption
projections which can be used to reconstruct a spectral–
spatial image. This integration modifies [38] to

R�1

R
~snðn; ~G;BmÞdn

cos2a

" #
¼

Z
~f~rðB; c~x;BmÞdB: ð39Þ

Note that the integrals in [39] are indefinite. The recon-
structed spectral–spatial image contains modulation dis-
torted absorption spectra. As discussed above, spectral
fitting can be used to estimate the undistorted spectral
parameters. This method of image reconstruction was
used for the conventional and overmodulated images
presented by Mailer et al. [38], which demonstrate the
fact that spectral shape is affected by modulation ampli-
tude while the spatial resolution is not affected.
3. Discussion

In this work, we have described an explicit model of
EPR imaging, including the effects of modulation ampli-
tude, and the relationship between the measured EPR
data and the Radon transform of the spectral–spatial
object. Several methods of image reconstruction sug-
gested by this theoretical development were discussed.
We have also shown that the effect of modulation ampli-
tude on the reconstructed image is restricted to the spec-
tral dimension and that the spatial distribution is
unaffected. Thus, in spectroscopic EPR imaging, over-
modulation does not lead to a decrease in spatial resolu-
tion. The ability to use high modulation amplitudes in
EPR imaging significantly improves the observed SNR
and the precision of estimated spectral parameters [38].
The mathematical expressions developed in this work
are the starting point for a number of published
enhancements in the literature for computed tomogra-
phy. These include the adaptive filtering technique
[43], iterative reconstruction techniques [44], techniques
for use with truncated data [45] and few–view recon-
struction [46]. The development of a consistent descrip-
tion of the backprojection problem will allow such
enhancements to be applied in the specific context of
EPR image reconstruction. In addition, this mathemat-
ical framework may enable further improvements in im-
age quality and imaging flexibility through the
incorporation of appropriate perturbation terms.
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